Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564636

RESUMO

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica , Quinases Ciclina-Dependentes/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação , Hipóxia , Transcrição Gênica , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
J Cell Mol Med ; 28(8): e18327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661437

RESUMO

Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.


Assuntos
Cartilagem Articular , Proliferação de Células , Condrócitos , Modelos Animais de Doenças , Exossomos , Animais , Exossomos/metabolismo , Ratos , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Movimento Celular , Ratos Sprague-Dawley , Quinase 9 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/terapia , Masculino , Células Cultivadas , Regeneração , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia
3.
FASEB J ; 38(8): e23628, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661032

RESUMO

Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in cancer cells. In MYC over-expressing prostate cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate cancer, a currently lethal disease.


Assuntos
Quinase 9 Dependente de Ciclina , Imunidade Inata , Neoplasias da Próstata , Quinase 9 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Humanos , Masculino , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
4.
J Biol Chem ; 300(3): 105698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301887

RESUMO

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex. Supporting the specific role for actin in the elongation phase of transcription, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) reveals that actin interacts with genes only upon their active transcription elongation. This study therefore provides novel insights into the mechanisms by which actin facilitates the transcription process.


Assuntos
Actinas , Quinase 9 Dependente de Ciclina , Fator B de Elongação Transcricional Positiva , Humanos , Actinas/genética , Actinas/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 121(7): e2307150121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315842

RESUMO

Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.


Assuntos
Quinase 9 Dependente de Ciclina , Histona Desmetilases , Tolerância Imunológica , Ubiquitina-Proteína Ligases , Humanos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Antimicrob Agents Chemother ; 68(3): e0107223, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319085

RESUMO

Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.


Assuntos
HIV-1 , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Ciclinas/farmacologia
7.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172923

RESUMO

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Camundongos , Ratos , Animais , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Decitabina/farmacologia , Metilação de DNA , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Apoptose
8.
Hum Cell ; 37(2): 451-464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38167752

RESUMO

This study aims to explore the functions and mechanisms of long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) in chronic constriction injury (CCI)-induced neuropathic pain (NP). An NP rat model was established using the CCI method and the NP severity was evaluated by paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The expression of SNHG5, CDK9, and SCN9A was quantified in rat dorsal root ganglion, in addition to the detections of apoptosis, pathological changes, neuron number, and the co-localization of Nav1.7 and cleaved caspase-3 with NeuN. In ND7/23 cells, the apoptosis and lactate dehydrogenase concentration were assessed, as well as the relationship between SNHG5, CDK9, and SCN9A. In the dorsal root ganglion of CCI-treated rats, SNHG5 and SCN9A were upregulated and downregulation of SNHG5 suppressed SCN9A expression, increased the PWT and PWL, blocked neuroinflammation and neuronal apoptosis, and alleviated NP. Mechanistically, SNHG5 recruited CDK9 to enhance SCN9A-encoded Nav1.7 expression and promoted peripheral neuronal apoptosis and injury. In addition, SCN9A overexpression nullified the alleviative effects of SNHG5 deficiency on NP and neuron loss in CCI rats. In conclusion, SNHG5 promotes SCN9A-encoded Nav1.7 expression by recruiting CDK9, thereby facilitating neuron loss and NP after spinal nerve injury, which may offer a promising target for the management of NP.


Assuntos
MicroRNAs , Neuralgia , RNA Longo não Codificante , Animais , Ratos , MicroRNAs/genética , Neuralgia/genética , Ratos Sprague-Dawley , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nucleolar Pequeno , Nervos Espinhais/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo
9.
Neuro Oncol ; 26(1): 70-84, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37551745

RESUMO

BACKGROUND: Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS: We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS: CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS: Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 9 Dependente de Ciclina/metabolismo
10.
Eur J Med Chem ; 261: 115858, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837671

RESUMO

Cyclin-dependent kinase 9 (CDK9) is directly related to tumor development in triple-negative breast cancer (TNBC) patients. Increased CDK9 is significantly associated with poor patient prognosis, while inhibiting CDK9-Cyclin T1 protein-protein interaction has recently been demonstrated as a new approach to TNBC treatment. Herein, we synthesized a novel class of 4,4'-bipyridine derivatives as potential CDK9-Cyclin T1 PPI inhibitors against TNBC. The represented compound B19 was found to be an excellent and selective CDK9-Cyclin T1 PPI inhibitor with good potency against TNBC cell lines while exhibiting lower toxicity in normal human cell lines than the positive compound I-CDK9. Notably, compound B19 showed good pharmacokinetic properties and excellent antitumor activity against TNBC (4T1) allografts in mice with a therapeutic index of more than 42 (TGI4T1(12.5 mg/kg,i.p.) = 63.1% vs. LD50 = 537 mg/kg). Moreover, the administration of B19 in combination with the PARP inhibitor Olaparib results in a significant increase of the antitumor activity in MDA-MB-231 cells relative to that of either single agent. To our knowledge, B19 is the first reported non-metal organic compound that acts as a selective CDK9-Cyclin T1 PPI inhibitor with in vivo antitumor activity, and it may be alone and in combination with PARP inhibitor Olaparib for TNBC therapy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Ciclina T , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo
11.
Mol Cell Biol ; 43(9): 451-471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564002

RESUMO

Positive transcription elongation factor b (P-TEFb) regulates expression of diverse sets of genes within mammalian cells that have implications in several human disease pathogeneses. However, mechanisms of functional regulation of P-TEFb complex through regulation of its stability are poorly known. In this study, we show an important role of C-terminus of Hsc70-interacting protein (CHIP aka STUB1) in regulation of overall level of CDK9 and thus P-TEFb complex within mammalian cells. STUB1 acts as a ubiquitin E3 ligase for proteasomal degradation of CDK9 involving N-terminal lysine 3 (K3) residue. Whereas, overexpression of STUB1 enhances, its knockdown reduces overall CDK9 degradation kinetics within mammalian cells. Interestingly, owing to the same region of binding within CDK9, CyclinT1 protects CDK9 from STUB1-mediated degradation. Factors that cooperatively bind with CyclinT1 to form functional complex also protects CDK9 from degradation by STUB1. Knockdown of STUB1 enhances CDK9 expression and thus P-TEFb complex formation that leads to global increase in RNA polymerase II CTD phosphorylation and transcriptional activation of diverse P-TEFb target genes. Thus, we describe an important functional role of STUB1 in regulation of transcription through modulation of overall level of P-TEFb complex formation within mammalian cells.


Assuntos
Fator B de Elongação Transcricional Positiva , Ubiquitina-Proteína Ligases , Animais , Humanos , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/metabolismo , Fosforilação , Expressão Gênica , Transcrição Gênica , Mamíferos/genética , Mamíferos/metabolismo
12.
Eur J Med Chem ; 259: 115711, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572539

RESUMO

Acute myeloid leukemia (AML) is a prevalent hematological tumor associated with a high morbidity and mortality rate. CDK9, functioning as a pivotal transcriptional regulator, facilitates transcriptional elongation through phosphorylation of RNA polymerase II, which further governs the protein levels of Mcl-1 and c-Myc. Therefore, CDK9 has been considered as a promising therapeutic target for AML treatment. Here, we present the design, synthesis, and evaluation of CDK9 inhibitors bearing a flavonoid scaffold. Among them, compound 21a emerged as a highly selective CDK9 inhibitor (IC50 = 6.7 nM), exhibiting over 80-fold selectivity towards most other CDK family members and high kinase selectivity. In Mv4-11 cells, 21a effectively hindered cell proliferation (IC50 = 60 nM) and induced apoptosis by down-regulating Mcl-1 and c-Myc. Notably, 21a demonstrated significant inhibition of tumor growth in the Mv4-11 xenograft tumor model. These findings indicate that compound 21a holds promise as a potential candidate for treating AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/patologia , Apoptose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo
13.
Expert Opin Ther Pat ; 33(4): 309-322, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128897

RESUMO

INTRODUCTION: The dysregulation of CDK9 protein is greatly related to the proliferation and differentiation of various cancers due to its key role in the regulation of RNA transcription. Moreover, CDK9 inhibition can markedly downregulate the anti-apoptotic protein Mcl-1 which is essential for the survival of tumors. Thus, targeting CDK9 is considered to be a promising strategy for antitumor drug development, and the development of selective CDK9 inhibitors has gained increasing attention. AREAS COVERED: This review focuses on the development of selective CDK9 inhibitors reported in patent publications during the period 2020-2022, which were searched from SciFinder and Cortellis Drug Discovery Intelligence. EXPERT OPINION: Given that pan-CDK9 inhibitors may lead to serious side effects due to poor selectivity, the investigation of selective CDK9 inhibitors has attracted widespread attention. CDK9 inhibitors make some advance in treating solid tumors and possess the therapeutic potential in EGFR-mutant lung cancer. CDK9 inhibitors with short half-life and intravenous administration might result in transient target engagement and contribute to a better safety profile in vivo. However, more efforts are urgently needed to accelerate the development of CDK9 inhibitors, including the research on new binding modes between ligand and receptor or new protein binding sites.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Patentes como Assunto , Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Desenvolvimento de Medicamentos , Sítios de Ligação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo
14.
FEBS J ; 290(18): 4543-4561, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247228

RESUMO

O-GlcNAcylation (O-linked ß-N-acetylglucosaminylation) is an important post-translational and metabolic process in cells that is implicated in a wide range of physiological processes. O-GlcNAc transferase (OGT) is ubiquitously present in cells and is the only enzyme that catalyses the transfer of O-GlcNAc to nucleocytoplasmic proteins. Aberrant glycosylation by OGT has been linked to a variety of diseases including cancer, neurodegenerative disorders and diabetes. Previously, we and others demonstrated that O-GlcNAcylation is notably elevated in hepatocellular carcinoma (HCC). The overexpression of O-GlcNAcylation promotes cancer progression and metastasis. Here, we report the identification of HLY838, a novel diketopiperazine-based OGT inhibitor with the ability to induce a global decrease in cellular O-GlcNAc. HLY838 enhances the in vitro and in vivo anti-HCC activity of CDK9 inhibitor by downregulating c-Myc and downstream E2F1 expression. Mechanistically, c-Myc is regulated by the CDK9 at the transcript level, and stabilized by OGT at the protein level. This work therefore demonstrates that HLY838 potentiates the antitumor responses of CDK9 inhibitor, providing an experimental rationale for developing OGT inhibitor as a sensitizing agent in cancer therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Glicosilação , Processamento de Proteína Pós-Traducional , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo
15.
Eur J Med Chem ; 254: 115342, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37071962

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a promising therapeutic target in multiple cancer types, including acute myeloid leukemia (AML). Protein degraders, also known as proteolysis targeting chimeras (PROTACs), have emerged as tools for the selective degradation of cancer targets, including CDK9, complementing the activity of traditional small-molecule inhibitors. These compounds typically incorporate previously reported inhibitors and a known E3 ligase ligand to induce ubiquitination and subsequent degradation of the target protein. Although many protein degraders have been reported in the literature, the properties of the linker necessary for efficient degradation still require special attention. In this study, a series of protein degraders was developed, employing the clinically tested CDK inhibitor AT7519. The purpose of this study was to examine the effect that linker composition, specifically chain length, would have on potency. In addition to establishing a baseline of activity for various linker compositions, two distinct homologous series, a fully alkyl series and an amide-containing series, were prepared, demonstrating the dependence of degrader potency in these series on linker length and the correlation with predicted physicochemical properties.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Proteólise , Quinase 9 Dependente de Ciclina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico
16.
Clin Exp Pharmacol Physiol ; 50(7): 541-553, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924113

RESUMO

Exposure to sevoflurane leads to serious neurological side effects, including neuronal apoptosis and cognitive impairment. In the mouse model, cyclin dependent kinase 9 (CDK9) was significantly downregulated after exposure to sevoflurane, but the effect of CDK9 on neuronal apoptosis and cognitive impairment after sevoflurane exposure has not been elucidated. Here, we found that the upregulation of P300 by sevoflurane in vitro and in vivo inhibited the expression of CDK9 and induced neuron apoptosis. The effect of sevoflurane on CDK9 expression is based on inhibition of its transcription process. P300 inhibited the binding of Sp1 to DNA by affecting the level of Sp1 acetylation, thereby inhibiting the expression of CDK9, cell-cycle arrest and increasing neuron apoptosis. After the use of P300 inhibitor, the acetylation level of Sp1 decreased, thereby increasing binding in the CDK9 promoter region and exerting anti-apoptosis effects. Mice exposed to sevoflurane using P300 inhibitor also showed decreased levels of apoptosis of cortical cells and a decrease in recent cognitive impairment. In summary, sevoflurane-induced P300 inhibited activity of Sp1 by increasing Sp1 acetylation modification, down-modulates CDK9 expression and promotes the occurrence of neuronal apoptosis.


Assuntos
Quinase 9 Dependente de Ciclina , Neurônios , Camundongos , Animais , Sevoflurano/farmacologia , Quinase 9 Dependente de Ciclina/metabolismo , Regulação para Cima , Neurônios/metabolismo
17.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975214

RESUMO

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


Assuntos
Infecções por HIV , Estilbenos , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase C/genética , Quinase 9 Dependente de Ciclina/metabolismo , Leucócitos Mononucleares/metabolismo , Replicação Viral , Latência Viral , Estilbenos/farmacologia , Infecções por HIV/metabolismo , RNA
18.
Clin. transl. oncol. (Print) ; 25(3): 830-840, mar. 2023.
Artigo em Inglês | IBECS | ID: ibc-216441

RESUMO

Purpose The mutation of p53 is considered a pivotal step in bladder cancer pathogenesis. Recently, distinct interactions between p53 and CDK9, a transcription regulator, have been described. In this work, we explored the prognostic role of p53 expression and evaluated its associations with CDK9 in urothelial carcinoma. Materials and methods The research group consisted of 67 bladder cancer samples and 32 normal urothelial mucosa samples. All specimens were analyzed using ImageJ and the IHC profiler plugin. To validate the results, 406 cases from The Cancer Genome Atlas database were analyzed. Results P53 and CDK9 are overexpressed in urothelial cancer tissues when compared to normal urothelial tissues (p < 0.05). High p53 expression was observed in metastatic tumors and tumors with high CDK9 expression (p < 0,05). High p53 expression was predictive for shorter survival in patients with non-muscle-invasive bladder cancer (HR = 0.107 [0.012–0.96]; p = 0.046) but did not correlate with prognosis in the muscle-invasive group. In high CDK9 cancers, high p53 expression correlated with the occurrence of high-grade and muscle-invasive tumors (p < 0.05). Conclusion High expression of p53 correlates with unfavorable clinical features of bladder cancer. CDK9 is associated with the expression of p53, possibly through interactions with p53 inhibitors. Since the blockade of CDK9 in other malignancies reactivates wild-p53 activity, confirming the crosstalk between p53 and CDK9 in bladder cancer may be another step to explain the mechanism of tumor progression in its early stages (AU)


Assuntos
Humanos , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Prognóstico , Proteína Supressora de Tumor p53/metabolismo
19.
J Am Heart Assoc ; 12(4): e026160, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36789845

RESUMO

Background Therapeutic hypothermia has a beneficial effect on cardiac function after acute myocardial infarction, but the exact mechanism is still unclear. Recent research has suggested that microRNAs participate in acute myocardial infarction to regulate cardiomyocyte survival. This study aimed to explore the ability of hypothermia-regulated microRNA-483-3p (miR-483-3p) to inhibit hypoxia-induced myocardial infarction. Methods and Results Primary cardiomyocytes were cultured under hypoxia at 32 °C to mimic therapeutic hypothermia, and the differentially expressed microRNAs were determined by RNA sequencing. Therapeutic hypothermia recovered hypoxia-induced increases in apoptosis, decreases in ATP levels, and decreases in miR-483-3p expression. Overexpression of miR-483-3p exhibited effects similar to those of therapeutic hypothermia on hypoxia in the treatment of cardiomyocytes to associate with maintaining the mitochondrial membrane potential, and cyclin-dependent kinase 9 (Cdk9) was identified as a target gene with downregulated expression by miR-483-3p. Knockdown of Cdk9 also promoted cardiac survival, ATP production, and mitochondrial membrane potential stability under hypoxia. In vivo, the expression of miR-483-3p and Cdk9 was tested in the cardiac tissue of the mice with acute myocardial infarction, and the expression of miR-483-3p decreased and Cdk9 increased in the region of myocardial infarction. However, miR-483-3p was overexpressed with lentivirus, which suppressed apoptosis, infarct size (miR-483-3p, 22.00±4.04% versus negative control, 28.57±5.44%, P<0.05), and Cdk9 expression to improve cardiac contractility. Conclusions MiR-483-3p antagonizes hypoxia, leading to cardiomyocyte injury by targeting Cdk9, which is a new mechanism of therapeutic hypothermia.


Assuntos
MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Apoptose/genética , Trifosfato de Adenosina/metabolismo
20.
BMC Cancer ; 23(1): 71, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670405

RESUMO

Chronic infection with Kaposi's sarcoma-associated herpes virus (KSHV) in B lymphocytes causes primary effusion lymphoma (PEL), the most aggressive form of KSHV-related cancer, which is resistant to conventional chemotherapy. In this study, we report that the BCBL-1 KSHV+ PEL cell line does not harbor oncogenic mutations responsible for its aggressive malignancy. Assuming that KSHV viral oncogenes play crucial roles in PEL proliferation, we examined the effect of cyclin-dependent kinase 9 (CDK9) inhibitor FIT-039 on KSHV viral gene expression and KSHV+ PEL proliferation. We found that FIT-039 treatment impaired the proliferation of KSHV+ PEL cells and the expression of KSHV viral genes in vitro. The effects of FIT-039 treatment on PEL cells were further evaluated in the PEL xenograft model that retains a more physiological environment for the growth of PEL growth and KSHV propagation, and we confirmed that FIT-039 administration drastically inhibited PEL growth in vivo. Our current study indicates that FIT-039 is a potential new anticancer drug targeting KSHV for PEL patients.


Assuntos
Herpesvirus Humano 8 , Linfoma de Efusão Primária , Neoplasias , Sarcoma de Kaposi , Humanos , Sarcoma de Kaposi/tratamento farmacológico , Linfoma de Efusão Primária/patologia , Quinase 9 Dependente de Ciclina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...